Management Summary Green LOGIX:

Ziele des Gesamtprojektes

Das Projektziel von Green LOGIX ist die Erforschung und Evaluierung unterschiedlicher Ansätze bei der Vegetationskontrolle an Verkehrsinfrastrukturflächen mit einer ausgeglichenen Abwägung zwischen konventionellen und effektiven ökoalternativen Methoden.

- Alternative/ökologische Vegetationskontrolle
- Mechanische und bauliche Vegetationskontrolle
- Chemische Vegetationskontrolle

Das Projekt Ziel ist es, für die jeweiligen Anforderungen eines Streckenabschnitts (Schiene oder Straße) die jeweils effektivste und zugleich umweltschonendste Lösung beziehungsweise Anwendung darzustellen.

Aufgaben im Detail

biohelp

Austestung von chemischen Alternativen zur Vegetationsbekämpfung auf Schienenwegen: Die Wirkung von derzeit auf Gleisen, in Nichtkulturland, bzw. in der Landwirtschaft zugelassenen Herbiziden und -mischungen wird untersucht. Wirkungsgrade und Wirtschaftlichkeit werden im Vergleich zu der derzeit eingesetzten Herbizidmischung der ÖBB dargestellt.

Austestung der Wirkung von Pelargonsäureprodukten im Gemeindebereich, die derzeit im Nichtkulturland und der Landwirtschaft zugelassen sind.

E.C.O. Institut für Ökologie

Welche der in Wien Breitenlee getesteten Methoden bewirkt die größte Deckungsgrad-Reduktion der Pflanzen?

Können "Konkurrenzpflanzungen" den Pflegeaufwand der ÖBB, also die regelmäßige Mahd, verringern?

Welche Arten kommen an den Testkästen der FH Villach auf? Erhitzen sich die getesteten Substrate durch Sonneneinstrahlung allein genug, um die Keimfähigkeit der Pflanzensamen herabzusetzen bzw. zu verhindern?

Kann die Elektroweeding-Methode zum Vegetationsmanagement bei der ÖBB eingesetzt werden?

FH Technikum Wien

Im Zuge des Green-LOGIX Projektes (Vegetationskontrolle an Straßen und Schienenwegen) war es das Ziel der Fachhochschule Technikum Wien, eine ökotoxikologische Einschätzung verschiedener ausgewählter Herbizide durchzuführen.

FH Kärnten

Welche Geotextilien und Vliese eignen sich am besten, um Vegetation an Verkehrsinfrastrukturen zu vermindern? Inwiefern gibt es einen Zusammenhang zwischen Gesteinsarten und Wachstum der Vegetation?

Einzelne Ergebnisse (von jedem Partner, ohne Methoden – Verweis auf die einzelnen Projektabschlussberichte)

biohelp

Untersucht wurden die Wirkung verschiedener Blatt-, Boden-, Gräserherbizide sowie Wuchsstoffe in unterschiedlicher Kombination und zu unterschiedlichen Spritzzeitpunkten. Von den 22, von 2018 bis 2020 getesteten, alternativen chemischen Varianten konnten 2 die Gleis-Vegetation 100%ig reduzieren. Weitere 9 Varianten bewirkten eine 90-98 %ige und 2 Varianten eine 80-83 %ige Reduktion der Gleisflora.

Die Wirkung 6 verschiedener Pelargonsäureprodukte (5 Herbizide, 1 Biozid) wurde im Gemeindebereich untersucht. Die Versuche wurden teils als Schauversuch durchgeführt. Auf eine Reihung wurde verzichtet, da nur die zwei zugelassenen Produkte biohelp Finalsan® und biohelp Finalsan® Plus für den Gemeindebereich zugelassen sind und keine Zulassung der anderen Produkte für diesen Bereich erwartet wird. Verweis Ergebnisbericht biohelp.

E.C.O. Institut für Ökologie

Die Flächen mit den Spritzversuchen wurden nicht von E.C.O. begleitet und sind nicht Teil dieser Auswertung. Die Versuche ergaben, dass das beste Ergebnis eines glyphosatfreien Mittels vom Herbizid-Mix "Nozomi & Chikara" mit einer Deckungsgrad-Reduktion von etwa 78% erzielt wurde. Sämtliche Spritzmittel reduzierten die Vegetationsdecke effektiver als die mechanischen Methoden Mähen bzw. Mähen & Mulchen. Die Elektroherbizid-Methode erwies sich als am wenigsten effektiv, unterlag aber gewissen Einschränkungen.

Die Konkurrenzpflanzung schließt brachliegende Flächen bei richtiger Anlage schnell und deckend und ist durch ihre geringe Wüchsigkeit eine geeignete Methode um die Pflegeintervalle der ÖBB durch Mähen gering zu halten bzw. zu verringern. Außerdem bietet die dichte Vegetationsschicht weniger Fläche für unerwünschte Vegetation (wie z.B. invasive Neophyten)und verringert so deren Aufkommen effektiv. Grobkörniges Substrat zeigte sich durch die Versuche als am wenigsten geeignet für spontanen Pflanzenaufwuchs und sollte bevorzugt verwendet werden.

Die Elektroherbizidmethode funktioniert unter guten Bedingungen eingeschränkt. Diese waren in Wien Breitenlee aber nur teilweise gegeben. Ausführlichere Informationen können dem eigenständigen Ergebnisbericht des E.C.O. Institut für Ökologie entnommen werden.

FH Technikum Wien

In Tabelle 1 sind die Konzentrationen angegeben, bei denen ein 50%iger Effekt (z.B. Wachstumshemmung) auf die Testorganismen zu beobachten war. Ein niedriger Wert bedeutet somit eine hohe akute Toxizität. Es ist ersichtlich, dass biohelp Finalsan® Plus im Vergleich zu Touchdown Quattro auf Fischembryos weniger toxisch, auf Algen jedoch stärker toxisch wirkt. Durch Zugabe des Netzmittels Wetcit® wird die Toxizität von Touchdown® Quattro maßgeblich erhöht, bei biohelp Finalsan® Plus war dieser Effekt nicht zu sehen.

Weitere EC₅₀-Werte für alle getesteten Herbizide finden sich im Ergebnisbericht der FH Technikum Wien, Anhang I.

Tabelle 1: EC₅₀-Werte der AGI- und FET-Tests der Formulierungen Finalsan, Touchdown® und Nozomi® sowie der Mischungen mit Wetcit®.

PA ... Pelargonsäure; GL ... Glyphosat; N ... Nozomi®

Formulierung		Formulierung + W	/etcit®
Algen (AGI)	(Fischembryos)	Algen (AGI)	(Fischembryos)
	FEI		FET

Biohelp Finalsan® Plus (g/L PA)	0,071	0,041	0,033	0,059
Touchdown® Quattro (g/L GL)	0,13	0,0011	0,0015	0,0008
Nozomi® (g/L N)	0,000012	0,54	0,0000014	nicht
				durchgeführt

Tabelle 2 zeigt die Persistenz der verschiedenen aktiven Substanzen. Hier ist ersichtlich, dass die aktiven Substanzen in biohelp Finalsan® Plus im Vergleich die geringste Verweildauer in der Umwelt aufweisen.

Tabelle 2: Persistenz der aktiven Substanzen inklusive ihrer Metaboliten nach Evaluierung der Europäischen Behörde für Lebensmittelsicherheit (EFSA). Diese ordnete jeder aktiven Substanz nach Betrachtung und Peer-Review verschiedener eingereichter Tests eine Persistenz zu, die die Verbleibdauer in der Umwelt charakterisiert. Eine detaillierte Auflistung der aktiven Substanzen in den verschiedenen Umweltbedingungen sowie der Metaboliten kann im Ergebnisbericht der FH Technikum Wien Anhang II (Seite 73-77) gefunden werden.

Formulierung	Aktive Substanz	Persistenz (nach EFSA)
Touchdown® Quattro	Glyphosat	niedrige bis sehr hohe Persistenz
Biohelp Finalsan® Plus	Pelargonsäure	nicht persistent
Biohelp Finalsan® Plus	Maleinsäurehydrazid	niedrige bis mittlere Persistenz
Nozomi®	Flumioxazin	mittlere Persistenz
Chikara®	Flazasulfuron	mittlere Persistenz
Valdor® Flex	Iodosulfuron	mittlere bis hohe Persistenz
Valdor® Flex	Diflufenican	hohe Persistenz

FH Kärnten

Der Fokus der FH Kärnten lag bei dem Projekt auf die Untersuchung von Baulichen Maßnahmen der Vegetationskontrolle.

Die FH Kärnten hat im Zuge des Green-LOGIX Projektes an Testsites in Wien, Linz und Villach verschiedene Mechanische Methoden zur Vegetationskontrolle an Schienen und Straßenwegen durchgeführt. Dabei wurden in Wien und Linz diverse Geotextilien und Vliese getestet. Die Geotextilien sollen den Bewuchs möglichst eindämmen und die Vliese sind vor allem bei Renovierungen und Neubauten von Infrastrukturen gut einsetzbar.

In Villach wurde mithilfe von Testkästen die Petrologie und das Wuchsverhalten von Pflanzen beobachtet. Dabei war das Erkennen von Zusammenhängen zwischen Gesteinsart und Wachstumsbedingungen sowie der Temperatureinfluss, die wesentliche Motivation dieser Untersuchung.

Die Gundlagenermittlung, welche Pflegemaßnahmen derzeit bei Infrastrukturbetreiber verwendet werden, wurde mittels qualitativer Fragebögen durchgeführt.

Nähere Informationen befinden sich im Ergebnisbericht der FH Kärnten.

Einzelne Erkenntnisse (von jedem Partner)

biohelp

Am wirtschaftlichsten wurden zwei Varianten (Katana®+Nozomi®; Fusilade® Max+Katana®+Nozomi®) mit 96 bzw. 94 % Reduktion der Gleisflora bewertet, bei denen nur eine Applikation und die geringsten Wasserhektaraufwandmengen der nötig waren.

Bei einem Einsatz von Pelargonsäureprodukten in der Gemeinde wird ein möglichst frühzeitiger Einsatz nach einer Neuanlage empfohlen. Bei bereits länger bestehenden Verunkrautungen ist eine höhere Behandlungsfrequenz notwendig – wenn nötig über mehrere Jahre – um hartnäckige Pflanzenarten zu schwächen und den gewünschten Erfolg zu erzielen.

E.C.O. Institut für Ökologie

Die besten Deckungsgradreduktionen lieferten Herbizide. Von den besten sechs getesteten Methoden enthielten fünf einen Glyphosat-Anteil. Der Einsatz von (alternativen) Herbiziden zur Vegetationskontrolle scheint weiterhin unumgänglich.

(Artenreiche) Samenmischungen eignen sich sehr gut zur Begrünung von Brachen und anderen Flächen, auf denen ihre Anwendung aus Sicherheitsgrünen zugelassen ist und sind ein geeignetes Mittel um den Pflegeaufwand der ÖBB auf diesen Flächen gering zu halten.

Kein getestetes Substrat kann durch die Sonneneinstrahlung allein die Keimfähigkeit der Pflanzensamen herabsetzen. Es wird in 10 cm Tiefe jedoch eine ausreichend hohe Temperatur erreicht, als dass Wasser in erhöhtem Maße verdunstet wird und die Keimbedingungen daher deutlich verschlechtert werden (weitere Informationen dazu im Ergebnisbericht des E.C.O. Institut für Ökologie und dem der FH Kärnten).

Die Elektroherbizid-Methode sollte zu den getesteten Bedingungen (noch) nicht eingesetzt werden, da sie zu vielen Einschränkungen und Unklarheiten unterliegt.

FH Technikum Wien

Vergleiche der erhaltenen EC₅₀-Werte von Touchdown® Quattro (Zellen: 0,73 g/L; Algen: 0,45 g/L; Fische: 0,038 g/L) und biohelp Finalsan® Plus (Zellen: 1,37 g/L; Algen: 0,37 g/L; Fische: 0,21 g/L) zeigen, dass Touchdown® Quattro mit Ausnahme der Algen stärker toxisch wirkte als biohelp Finalsan® Plus. Die EC₅₀-Werte der Herbizide Valdor® Flex, Chikara® und Nozomi® zeigen eine sehr schwache bzw. keine Toxizität für Zellen und Zebrafisch-Embryonen, allerdings eine sehr starke Toxizität für Algen. Tests mit der wachstumshemmenden Regupol-Matte Typ 767 zeigten bei keinem der Modellorganismen eine akute Toxizität.

Basierend auf den erzielten Ergebnissen und den verfügbaren Informationen aus bereits publizierter Literatur wird biohelp Finalsan® Plus mit den Wirkstoffen Pelargonsäure und Maleinsäurehydrazid für den Einsatz an Gleisanlagen empfohlen. Pelargonsäure wies im Vergleich zu den Wirkstoffen der anderen getesteten Formulierungen die geringste Toxizität auf und zeigt laut Literaturangaben ebenso die geringste Persistenz (< 1 Tag) in der Umwelt (z.B. Persistenz von Glyphosat: 15-1000 Tage).

Sowohl bei ökotoxikologischen Tests mit Extrakten größerer Mattenstücke als auch des Feinabriebs konnten keine negativen Effekte auf die Testorganismen beobachtet werden (siehe Ergebnisbericht FH Technikum Wien, Abbildung 2, Seite 18). Ein Großteil der möglicherweise gelösten

Stoffe aus den Matten sind einfache Kohlenwasserstoff-Verbindungen oder Spuren von Metallen. Die Metalle liegen wahrscheinlich in so geringen Mengen vor, dass keine akuten toxischen Effekte zu erwarten sind, chronische Effekte können durch Akkumulation jedoch nicht ausgeschlossen werden.

FH Kärnten

Bei den ausgetesteten Vliesen, konnte während des Untersuchungszeitraumes keine Unterschiede festgestellt werden. Bei der BSW Matte ist der richtige Einbau für die Haltbarkeit Essentiell.

Das Erkennen von Zusammenhängen zwischen Gesteinsart und Wachstumsbedingungen und Temperatur für die Vegetation sollte die Kernaussage dieser Untersuchung darstellen. Die Auswertung ergab folgende Erkenntnisse. Die Petrologie hat signifikante Auswirkungen auf der Wuchsverhalten der Pflanzen. Große Gesteinskörnung ist bewuchshemmender als Gemühle. Reines Material ist bewuchshemmender als unreines Material. Diabas ist bewuchshemmender als Granit. Recyclingasphalt ist bewuchshemmender als Recyclingbeton. Brechkorn ist bewuchshemmender als Kalkschiefer. Schattseitig mehr bewuchs als Sonnseitig. In den Randbereichen der Testkästen ist mehr Bewuchs als Mittig des Kastens. Diabas, Recyclingasphalt und Basalt können Höchstwerte bis zu 66 Grad erreichen (Infrarotmessung Recyclingasphalt). Datenlogger Höchstwerte am 13.08.2020 betrugen bei Granit 36 Grad bei 29 Grad Außentemperatur. Nähere Informationen befinden sich im Ergebnisbericht der FH Kärnten.

(Handlungs)Empfehlungen Übersicht

Zusammengefasste Erkenntnisse mit Reihung und (Handlungs)Empfehlungen (Ökotox wird gemeinsam mit Wirksamkeit berücksichtigt).

Abschätzung der Wirtschaftlichkeit Chemischer Methoden:

Rankin g Wirksa mkeit	Ort	% der Ausgangs- vegetatio n zu Saisonend e vorhande n	Variante (Tankmisch ung jeweils in Klammer);	Anzahl Spritzun gen	Kosten in €/ha gesamt pro Variante(erre chnet) Inkl. Zusatzstoffe laut Varianten	Menge Spritzbr ühe in L/ha gesamt pro Variant e	Variante/ Versuchsj ahr	Zugelassene indikation(en)	Ökotox	Persistenz nach EFSA	Handlung sempfehl ung In Bezug auf Wirksamk eit	Ran king Wir tsch aflic hke it
1	Verschi ebebah nhof Erdber	0	Stomp® Aqua + (Katana® + Nozomi®)	2	652	1007	V5/2020	Stomp® Aqua: Ackerbau; Katana® + Nozomi®: Gleisanlagen	Mit dieser Mischung wurden keine Tests durchgeführt	Stomp® Aqua : keine Daten verfügbar; Katana® + Nozomi®: mittlere Persistenz	Sehr empfehle nswert	4

1	Verschi ebebah nhof Erdber g	0	Nozomi® + (Katana® + Duplosan® Super)	2	642	906	V9/2020	Gleisanlagen	Mit dieser Mischung wurden keine Tests durchgeführt	Katana® + Nozomi®: mittlere Persistenz; Duplosan® Super: keine Daten verfügbar	Sehr empfehle nswert	4
2	Verschi ebebah nhof Erdber g	2	(Katana® + Nozomi®) + Duplosan® Super	2	633	805	V8/2020	Katana® + Nozomi®: Gleisanlagen; Duplosan® Super: Ackerbau	Mit dieser Mischung wurden keine Tests durchgeführt	Katana® + Nozomi®: mittlere Persistenz; Duplosan® Super: keine Daten verfügbar	Sehr empfehle nswert	3
2	Verschi ebebah nhof Erdber g	2	Nozomi® + (Katana® + Valdor® Flex)	2	1128	1005	V3/2020	Gleisanlagen	Mit dieser Mischung wurden keine Tests durchgeführt	Katana® + Nozomi®: mittlere Persistenz; Valdor® Flex: hohe Persistenz	Sehr empfehle nswert	5
3	Verschi ebebah nhof Erdber g	3	Chikara® (=Katana®) + biohelp Finalsan® Plus	2	1251	1756	V2/2019	Katana®: Gleisanlagen; biohelp Finalsan® Plus: Zierpflanzenbau (Wege, Plätze)	Moderat toxisch auf Algen, Nicht toxisch auf Zellen, Bei Fischen nicht getestet	Chikara®: Mittlere Persistenz; biohelp Finalsan® Plus: niedrige bis mittlere Persistenz	Sehr empfehle nswert	5
3	Verschi ebebah nhof Erdber g	3	Duplosan® Super + biohelp Finalsan® Plus	2	761	1474	V7/2020	Duplosan® Super: Ackerbau; biohelp Finalsan® Plus: Zierpflanzenbau (Wege, Plätze)	Mit dieser Mischung wurden keine Tests durchgeführt	Duplosan® Super: keine Daten verfügbar; biohelp Finalsan® Plus: niedrige bis mittlere Persistenz	Sehr empfehle nswert	5
3	Verschi ebebah nhof Erdber g	3	Nozomi® + (Katana® + Valdor® Flex)	2	1119	1004	V4/2020	Gleisanlagen	Mit dieser Mischung wurden keine Tests durchgeführt	Katana® + Nozomi®: mittlere Persistenz; Valdor® Flex: hohe Persistenz	Sehr empfehle nswert	5
4	Verschi ebebah nhof Erdber	4	Chikara® (=Katana®) + Nozomi®	1	637	503	V5/2019	Gleisanlagen	Sehr stark toxisch auf Algen, praktisch nicht toxisch auf Zebrafische	mittlere Persistenz	Sehr empfehle nswert	1
4	Verschi	4	(Katana® +	2	1373	1672	V1/2020	Katana® + Nozomi®:	Mit dieser	Katana® + Nozomi®:	Sehr	5

	ebebah nhof Erdber g		Nozomi®) + biohelp Finalsan® Plus					Gleisanlagen; biohelp Finalsan® Plus: Zierpflanzenbau (Wege, Plätze)	Mischung wurden keine Tests durchgeführt	mittlere Persistenz; biohelp Finalsan® Plus: niedrige bis mittlere Persistenz	empfehle nswert	
5	Verschi ebebah nhof Erdber g	6	Fusialde® Max + Katana® + Nozomi®	1	670	504	V6/2018	Fusialde® Max: Ackerbau; Katana® + Nozomi®: Gleisanlagen;	Mit dieser Mischung wurden keine Tests durchgeführt	Fusialde® Max: keine Daten verfügbar; Katana® + Nozomi®: mittlere Persistenz	Sehr empfehle nswert	2
6	Verschi ebebah nhof Erdber g	10	Nozomi® + biohelp Finalsan® Plus	2	1622	1757	V3/2019	Nozomi®: Gleisanlagen; biohelp Finalsan® Plus: Zierpflanzenbau (Wege, Plätze)	Praktisch nicht toxisch auf Zellen, Stark toxisch auf Algen, praktisch nicht toxisch auf Zebrafische	Nozomi®: mittlere Persistenz; ; biohelp Finalsan® Plus: niedrige bis mittlere Persistenz	Sehr empfehle nswert	5
6	Verschi ebebah nhof Erdber g	17	(Katana® + Nozomi®) + Pelargonsä ure Bayer	2	1074	1125	V2/2020	Katana® + Nozomi®: Gleisanlagen; Pelargonsäure Bayer: keine Zulassung	Mit dieser Mischung wurden keine Tests durchgeführt	Katana® + Nozomi®: mittlere Persistenz; Pelargonsäure Bayer: keine Daten verfügbar	empfehle nswert	5
7	Verschi ebebah nhof Erdber g	20	biohelp Finalsan®	2	1500	2341	V1/2018	Zierpflanzenbau (Wege, Plätze)	Praktisch nicht toxisch für Zellen, leicht toxisch auf die Algen, praktisch nicht toxisch auf Zebrafische	biohelp Finalsan® Plus: niedrige bis mittlere Persistenz	empfehle nswert	5

Tabelle 3: Bewertung der gewonnen Ergebnisse des Herbizideinsatzes auf dem Verschiebebahnhof Erdberg aus drei Versuchsjahren im Hinblick auf Wirkung und Wirtschaftlichkeit auf dem Gleiskörper. Genaue Aufschlüsselung und Beigabe von Zusatzstoffen siehe Datei *Reihung Ergebnisse ÖBB.xlsx*

Empfehlungen für weitere Anwendungszeitpunkte- und Wirkstoffkombinationen siehe Seite 28-32 des biohelp Ergebnisberichtes!

Abschätzung der Wirtschaftlichkeit Bauliche Methoden:

Reihung Geotextilien und Vliese:

Ranking Wirksam keit	Ort	% der Ausgangs- vegetatio n zu Saisonend e vorhande n	Variante / Art des Geotextils / Gesteinsart	Hersteller/ Herkunft	Kosten in €/ha gesamt pro Variante Excl. Lieferung und Einbaukosten	Menge Verlegte Menge in Meter	Versuchsj ahr/Einba ujahr	Variante	Ökoto x	Handlungsempfehlung / Besonderheiten	Ranking Wirtsch aflichkei t
1	Wien Breitenl ee	0	Regupol Bewuchshemn mende Matte Typ 767	BSW	155.000	20	2020	Offen verlegt, keine überschütt ung	Nicht akut toxisc h	Sehr empfehlenswert Rutschfest	3
2	Wien Breitenl ee	Bewuchs von der Seite	Dupont Plantex Platinium	Root Barrier B.V.	52.000	8	2020	Überschütt ung mit Gemühle		Sehr empfehlenswert Knöterichdicht Anflug von Samen und überwuchs möglich	2
2	Wien Breitenl ee	Bewuchs von der Seite	Robulon PP 80	TENCATE	29.600	5	2020	Überschütt ung mit Gemühle	1	Empfehlenswer Anflug von Samen und überwuchs möglich	2
2	Wien Breitenl ee	Bewuchs von der Seite	Polyfelt SP 285/7	TENCATE	12.000	8	2020	Überschütt ung mit Gemühle		Empfehlenswer Anflug von Samen und überwuchs möglich	2
2	Wien Breitenl ee	Bewuchs von der Seite	Polyfelt P120	TENCATE	42.000	8	2020	Überschütt ung mit Gemühle		Empfehlenswer Anflug von Samen und überwuchs möglich	2
2	Wien Breitenl ee	Bewuchs von der Seite	Polyfelt Weed stop S	TENCATE	10.000	8	2020	Überschütt ung mit Gemühle		Empfehlenswer Anflug von Samen und überwuchs möglich	2

Reihung Schotter:

Ranking Wirksamkeit	Ort	% der Ausgangs- vegetation zu Saisonende vorhanden	Variante / Art des Geotextils / Gesteinsart	Hersteller/H erkunft	Versuchsjah r/Einbaujahr	Variante	Handlungsempfehlung / Besonderheiten	Ranking Wirtschafli chkeit
1	Villach	0	Diabas Schotter	Bleiberg	2018 - 2020	Rein	Sehr empfehlenswert	1
2	Villach	5	Diabas Schotter	Bleiberg	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	1
1	Villach	0	Granit Schotter	Freistadt	2018 - 2020	Rein	Sehr empfehlenswert	1
1	Villach	0	Granit Schotter	Freistadt	2018 - 2020	Unrein (Ackerboden)	Sehr empfehlenswert	1
1	Villach	0	Kalkstein Schotter	Hollitzer	2018 - 2020	Rein	Sehr empfehlenswert	1
2	Villach	1	Kalkstein Schotter	Hollitzer	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	1
1	Villach	0	Granit KLZ Schotter	Hengl ÖBB	2018 - 2020	Rein	Sehr empfehlenswert	1
2	Villach	1	Granit KLZ Schotter	Hengl ÖBB	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	1
1	Villach	0	Basalt Schotter Klasse 2	Appel - Feldbach	2018 - 2020	Rein	Sehr empfehlenswert	1
1	Villach	0	Basalt Schotter Klasse 2	Appel - Feldbach	2018 - 2020	Unrein (Ackerboden)	Sehr empfehlenswert	1

Anmerkung Gesteinsarten (Die Kosten sind von Bundesland, Standort, Art und Umfang abhängig).

Reihung Gemühle und weitere Materialien:

Ranking	Ort	% der	Variante / Art des	Hersteller/H	Versuchsjahr/	Variante	Handlungsempfehlung	Ranking
Wirksamkeit		Ausgangs-	Geotextils / Gesteinsart	erkunft	Einbaujahr		/ Besonderheiten	Wirtscha
		vegetation zu						flichkeit

		Saisonende vorhanden						
1	Villach	1	Recyclingasphalt	AG	2018 - 2020	Rein	Sehr empfehlenswert	1
1	Villach	20	Kalkstein Gemühle	Hollitzer	2018 - 2020	Rein	Sehr empfehlenswert	1
1	Villach	20	Basalt Gemühle	Appel - Feldbach	2018 - 2020	Rein	Sehr empfehlenswert	1
2	Villach	50	Recyclingbeton	AG	2018 - 2020	Rein	empfehlenswert	2
2	Villach	35	Kalkschiefer	AG	2018 - 2020	Rein	empfehlenswert	2
2	Villach	50	Kalkstein Gemühle	Hollitzer	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	2
2	Villach	50	Granit Gemühle	Hengl ÖBB	2018 - 2020	Rein	empfehlenswert	2
2	Villach	55	Granit Gemühle	Hengl ÖBB	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	2
2	Villach	35	Basalt Gemühle	Appel - Feldbach	2018 - 2020	Unrein (Ackerboden)	empfehlenswert	2
3	Villach	95	Recyclingbeton	AG	2018 - 2020	Unrein (Ackerboden)	Nicht empfehlenswert	3
3	Villach	95	Recyclingasphalt	AG	2018 - 2020	Unrein (Ackerboden)	Nicht empfehlenswert	3
3	Villach	80	Kalkschiefer	AG	2018 - 2020	Unrein (Ackerboden)	Nicht empfehlenswert	3
3	Villach	80	Brechkorn	Drau	2018 - 2020	Rein	Nicht empfehlenswert	3
3	Villach	100	Brechkorn	Drau	2018 - 2020	Unrein (Ackerboden)	Nicht empfehlenswert	3

Anmerkung Gesteinsarten (Die Kosten sind von Bundesland, Standort, Art und Umfang abhängig).

Abschätzung der Wirtschaftlichkeit von "Ökologischen" oder Alternativen Methoden:

Ranking Wirksam keit	Ort	% der Ausgangs - vegetatio n zu Saisonen de vorhande n	Variante	Hersteller/Her kunft	Kosten in €/ha gesamt pro Variante Excl. Lieferung und Einbaukoste n	Testfläch e in Laufmet ern	Versuchsjahr/ Einbaujahr	Ökot ox	Besonder-heiten	Ranking Wirtschafl ichkeit
3	Breitenle e	26	Mähen&Mulchen, Schnittgut verbleibt	div. Anbieter, wie Maschinenrin g	41,13*	6	2019-2020		Sehr empfehlenswert	3
3	Breitenle e	25,5	Mähen, Schnittgut entfernt	div. Anbieter, wie Maschinenrin g	42,00*	6	2019-2020		Sehr empfehlenswert	3
4	Breitenle e	16,2	Elektroherbizid	Certis/Zasso	Nicht verfügbar	300	2020	-	Ungünstige Bedingungen und Einsetzbarkeiten, (so) nicht empfehlenswert	4
1	Breitenle e		Ansaat: Konkurrenzpflanun g Schotterrasen	Kärntner Saatbau: Renatura S7	2500	3	2019-2020		Trittfest, artenreich, niederwüchsig (>30cm), sehr empfehlenswert	2
2	Breitenle e	-	Ansaat: Konkurrenzpflanun g Sportplatzrasen	div. Anbieter	1600	3	2019-2020		Trittfest, artenreich, niederwüchsig (>30cm),	1

^{*}Schätzungen nach ÖKL-Richtwerten (https://oekl.at/wp-content/uploads/2020/01/%C3%96KL-RW_2020_Pauschal.pdf)

Anmerkung: Die Reihung geht von 1 mit sehr gut bis 7 nicht sehr wirksam. Die beiden grau hinterlegten Zeilen repräsentieren Methoden, da im Gleisbereich keinerlei Saatgutmischungen verwendet werden dürfen und diese für einen direkten Vergleich nicht herangezogen werden dürfen.